Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.
نویسنده
چکیده
We consider incompressible Euler flows in terms of the stream function in two dimensions and the vector potential in three dimensions. We pay special attention to the case with singular distributions of the vorticity, e.g., point vortices in two dimensions. An explicit equation governing the velocity potentials is derived in two steps. (i) Starting from the equation for the stream function [Ohkitani, Nonlinearity 21, T255 (2009)NONLE50951-771510.1088/0951-7715/21/12/T02], which is valid for smooth flows as well, we derive an equation for the complex velocity potential. (ii) Taking a real part of this equation, we find a dynamical equation for the velocity potential, which may be regarded as a refinement of Bernoulli theorem. In three-dimensional incompressible flows, we first derive dynamical equations for the vector potentials which are valid for smooth fields and then recast them in hypercomplex form. The equation for the velocity potential is identified as its real part and is valid, for example, flows with vortex layers. As an application, the Kelvin-Helmholtz problem has been worked out on the basis the current formalism. A connection to the Navier-Stokes regularity problem is addressed as a physical application of the equations for the vector potentials for smooth fields.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملMathematical Modeling of Potential Flow over a Rotating Cylinder (RESEARCH NOTE)
Potential flow over rotating cylinder is usually solved by the singularity method. However,in this paper a mathematical solution is presented for this problem by direct solution of the Laplace’sequation. Flow over the cylinder was considered non-viscous. Neumann and Dirichlet boundaryconditions were used on the solid surfaces and in the infinity, respectively. Because of non-viscous flow,the La...
متن کاملViscous potential flow
Potential flows u = ∇φ are solutions of the Navier–Stokes equations for viscous incompressible fluids for which the vorticity is identically zero. The viscous term μ∇u = μ∇∇φ vanishes, but the viscous contribution to the stress in an incompressible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity of a viscous fluid in potential flow away from the boundary layers e...
متن کاملA Divergence-free Velocity Reconstruction for Incompressible Flows
In incompressible flows with vanishing normal velocities at the boundary, irrotational forces in the momentum equations should be balanced completely by the pressure gradient. Unfortunately, nearly all available discretization methods for incompressible flows violate this property. The origin of the problem is that discrete velocity approximations of incompressible flows are usually not diverge...
متن کاملThe complete classification of self-similar solutions of the Navier-Stokes equations for incompressible flow
A new classification of self-similar solutions of the Navier-Stokes system of equations is presented here. We consider equations of motion for incompressible flow (of Newtonian fluids) in the curl rotating co-ordinate system. Then the equation of momentum should be split into the sub-system of 2 equations: an irrotational (curl-free) one, and a solenoidal (divergence-free) one. The irrotational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2015